Online First version

AN EXPLICIT CONSTRUCTION OF SIMPLE-MINDED SYSTEMS OVER SELF-INJECTIVE NAKAYAMA ALGEBRAS

ΒY

JING GUO (Hefei), YUMING LIU (Beijing), YU YE (Hefei) and ZHEN ZHANG (Beijing)

Abstract. Recently, we obtained a new characterization for an orthogonal system to be a simple-minded system in the stable module category of any representation-finite self-injective algebra. In this paper, we apply this result to give an explicit construction of simple-minded systems over self-injective Nakayama algebras.

1. Introduction. In her famous work on classification of representationfinite self-injective algebras A over an algebraically closed field k, Riedtmann defined the notion of (combinatorial) configurations in the stable Auslander– Reiten quiver ${}_{s}\Gamma_{A}$ of A. It turns out that the configurations of ${}_{s}\Gamma_{A}$ precisely correspond to simple-minded systems (sms for short) of the stable module category A-mod (see [6]). In Riedtmann and her collaborators' work ([13], [14], [15], [4]), the classification of sms's over any representation-finite self-injective algebra has been theoretically completed. In particular, if Ais the self-injective Nakayama algebra with n simple modules and Loewy length $\ell + 1$, then the sms's of A-mod are classified by τ^{n} -stable Brauer relations of order ℓ . Recently, Chan [5] gave a new classification of sms's over self-injective Nakayama algebras in terms of two-term tilting complexes.

Both Riedtmann's and Chan's classifications are implicit and it is not easy to write down the sms's explicitly from these classifications. In the present paper, we give an explicit construction of sms's over self-injective Nakayama algebras. Our construction depends on a new characterization of sms's over representation-finite self-injective algebras in [7] and a description (see Proposition 3.3 below) of the orthogonality condition in the stable module category over any self-injective Nakayama algebra.

We now briefly state our main result. Let A be the self-injective Nakayama algebra with n simple modules and Loewy length $\ell + 1$, and let \mathcal{P} be the set

Received 17 September 2019; revised 9 December 2019. Published online *.

²⁰²⁰ Mathematics Subject Classification: Primary 16G20; Secondary 11Bxx.

Key words and phrases: non-crossing partition, self-injective Nakayama algebra, sms of long-type, sms of short-type.

of non-crossing partitions of $\underline{e} := \{1, \ldots, e\}$, where e is the greatest common divisor of n and ℓ . For each pair (p, k) where $p \in \mathcal{P}$ and $k \in \underline{e}$, we construct two explicit families $\mathcal{L}'_{p,k}$ and $\mathcal{S}'_{p,k}$ of A-modules, and we prove that these families consist a complete set of sms's over A (see Theorems 4.10 and 4.16). The virtue of our construction is that one can directly write down the modules in the sms's from non-crossing partitions.

This paper is organized as follows. In Section 2, we recall some notions and facts on sms's and on self-injective Nakayama algebras. In Section 3, we introduce the arc of indecomposable module over any symmetric Nakayama algebra and use it to describe orthogonality in the corresponding stable module category. In Section 4, we recall non-crossing partitions and give an explicit construction of sms's over self-injective Nakayama algebras. In the last section, we study the behavior of our construction under the (co)syzygy functor.

2. Preliminaries. Throughout this paper all algebras will be finitedimensional algebras over an algebraically closed field k. For the details on representations of algebras and quivers we refer to [2]. For an algebra A, we denote by A-mod the category of finite-dimensional (left) A-modules. For any A-module M, we denote by $\operatorname{soc}(M)$ and $\operatorname{rad}(M)$ the socle and the radical of M, respectively. We shall use the following notations: $\operatorname{rad}^0(M) := M$, $\operatorname{rad}^{k+1}(M) := \operatorname{rad}(\operatorname{rad}^k(M))$ for $k \in \mathbb{N}$ and $\operatorname{top}(M) := M/\operatorname{rad}(M)$. Recall that the stable module category A-mod of A-mod has the same objects as A-mod but the morphism space between two objects M and N is the quotient space $\operatorname{Hom}_A(M, N) := \operatorname{Hom}_A(M, N)/\mathcal{P}(M, N)$, where $\mathcal{P}(M, N)$ is the subspace of $\operatorname{Hom}_A(M, N)$ consisting of those homomorphisms from M to N which factor through a projective A-module.

The notion of simple-minded system (sms for short) was introduced by Koenig and Liu [9] in the stable module category A-<u>mod</u> of any finitedimensional algebra A. It was shown in [9] that when A is representationfinite self-injective, the sms's in A-<u>mod</u> can be defined as follows.

DEFINITION 2.1 ([9, Theorem 5.6]). Let A be a representation-finite selfinjective algebra. A family of objects S in A-mod is an *sms* if the following conditions are satisfied:

(1) For any two objects S, T in \mathcal{S} ,

$$\underline{\operatorname{Hom}}_{A}(S,T) \cong \begin{cases} 0 & (S \neq T), \\ k & (S = T). \end{cases}$$

(2) For any indecomposable non-projective A-module X, there exists S in S such that $\underline{\operatorname{Hom}}_A(X,S) \neq 0$.

Recently, we obtained in [7] a new characterization of sms's over representation-finite self-injective algebras. To state the characterization, we first introduce the following definition.

DEFINITION 2.2 (cf. [7, Definition 2.1]). Let A be a self-injective algebra and M an indecomposable A-module. M is a stable brick if $\underline{\operatorname{Hom}}_A(M, M) \cong k$. A set S of stable bricks in A-mod is an orthogonal system if $\underline{\operatorname{Hom}}_A(M, N) = 0$ for all distinct stable bricks M, N in S.

THEOREM 2.3 ([7, Theorem 3.1]). Let A be a representation-finite selfinjective algebra and S a family of objects in A-mod. Then S is an sms if and only if S satisfies the following three conditions:

- (1) S is an orthogonal system in A-mod.
- (2) The cardinality of S is equal to the number of non-isomorphic non-projective simple A-modules.
- (3) S is Nakayama-stable, that is, the Nakayama functor ν permutes the objects of S.

Now we specialize our discussion to self-injective Nakayama algebras. We denote by A_n^{ℓ} the self-injective Nakayama algebra with n simples and Loewy length $\ell + 1$, where n, ℓ are positive integers. More precisely, $A_n^{\ell} = kQ/I$ is given by the following quiver Q:

with admissible ideal $I = \operatorname{rad}^{\ell+1}(kQ)$. It is known that A_n^{ℓ} is representation-finite [2, V.3, Theorem 3.5].

Let $A = A_n^{\ell}$ be a self-injective Nakayama algebra defined as above. As usual, we denote by D, ν, Ω , and $\tau = D$ Tr the k-dual functor, the Nakayama functor, the syzygy functor and the Auslander–Reiten translate of A, respectively. Let S_1, \ldots, S_n be the simple A-modules corresponding to the vertices $1, \ldots, n$ of the quiver Q. For any indecomposable A-module M, the Loewy length of M, denoted by $\ell(M)$, is the number of composition factors in any composition series of M. Notice that any indecomposable A-module M is uniserial and completely determined up to isomorphism by top(M), soc(M)and $\ell(M)$. We write $M = M_{j,k}^i$ to indicate that top(M) is isomorphic to S_i , soc(M) is isomorphic to S_j , and the multiplicity of S_i in M (that is, the number of composition factors of M which are isomorphic to S_i) is k + 1. Moreover, the dimension of $M_{j,k}^i$ as vector space is nk+[j-i)+1, where [j-i)is the smallest non-negative integer with $[j-i) = (j-i) \mod n$. If i < j, then the dimension vector of $M_{j,k}^i$ is $(k, k, \ldots, k, k+1, k+1, \ldots, k+1, k, k, \ldots, k)$, where k+1 appears from position i to position j. If i > j, then the dimension vector of $M_{j,k}^i$ is $(k+1, k+1, \ldots, k+1, k, \ldots, k, k+1, k+1, \ldots, k+1)$, where k+1 appears from position 1 to position j and from position i to position n. If i = j, then the dimension vector of $M_{j,k}^i$ is $(k, k, \ldots, k, k+1, k, k, \ldots, k)$, where k+1 appears at position i. In the following, we will freely use the above notation or a Loewy diagram as in Example 4.3 to specify an indecomposable A_n^{ℓ} -module.

The Nakayama functor ν of A is important to the present paper and we give a description for it in the following two lemmas.

LEMMA 2.4. Let $A_n^{\ell} = kQ/I$ be a self-injective Nakayama algebra. If M is an indecomposable non-projective A_n^{ℓ} -module, then $\nu(M) \cong \tau^{-\ell}(M)$.

Proof. We can easily verify this result for simple modules and then extend it to all indecomposable non-projective modules since ν is a self-equivalence over A-mod.

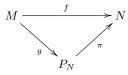
LEMMA 2.5. Let M be an indecomposable non-projective A_n^{ℓ} -module. We denote by $O_{\nu}(M)$ the ν -orbit of M. Then the number of objects in $O_{\nu}(M)$ is n/e and $O_{\nu}(M) = \{M, \tau^{-e}(M), \ldots, \tau^{-n+e}(M)\}$, where $e = \gcd(n, \ell)$.

Proof. By Lemma 2.4, we have $O_{\nu}(M) = \{M, \tau^{-\ell}(M), \dots, \tau^{-(k-1)\ell}(M)\}$, where k is the minimum positive integer such that n divides $k\ell$. Since n/eand ℓ/e are coprime, we have k = n/e. Thus, the number of objects in $O_{\nu}(M)$ is n/e and $O_{\nu}(M) = \{M, \tau^{-e}(M), \dots, \tau^{-n+e}(M)\}$.

In the rest of this section, we prove several elementary results on homomorphism spaces in the stable category of a self-injective Nakayama algebra. For $f \in \text{Hom}_A(M, N)$, we will denote its image in $\underline{\text{Hom}}_A(M, N)$ by f.

LEMMA 2.6. Let $A = A_n^{\ell}$ be a self-injective Nakayama algebra, and let M, N be indecomposable non-projective A-modules. Suppose that there exists a non-zero morphism $f \in \operatorname{Hom}_A(M, N)$ satisfying $\operatorname{Im} f = \operatorname{rad}^t(N)$. Then $\underline{f} = 0$ if and only if $\ell(M) + t \ge \ell + 1$. In particular, if i (respectively j) is the multiplicity of $\operatorname{top}(N)$ in $N/\operatorname{rad}^t(N)$ (respectively M), then $\underline{f} = 0$ implies $i + j \ge \lfloor \ell/n \rfloor + 1$, where $\lfloor \ell/n \rfloor$ is the maximum integer no more than ℓ/n .

Proof. " \Rightarrow " Since $\underline{f} = 0$, we have the following commutative diagram in A-mod:



where π is the projective cover of N. Then $\operatorname{Im} g = \operatorname{rad}^t(P_N)$ and $\ell(M) \geq \ell(\operatorname{rad}^t(P_N)) = \ell(P_N) - t = \ell + 1 - t$, that is, $\ell(M) + t \geq \ell + 1$.

" \Leftarrow " Suppose that $\ell(M) + t \ge \ell + 1$ and let $\pi: P_N \to N$ be the projective cover of N. Then we can define a morphism g from M to P_N satisfying Im $g = \operatorname{rad}^t(P_N)$ and $f = \pi g$, that is, f factors through a projective module.

REMARK 2.7. Notice that $i+j \ge \lfloor \ell/n \rfloor + 1$ is not a necessary and sufficient condition for $\underline{f} = 0$ in general. However, if A_n^{ℓ} is a symmetric Nakayama algebra (that is, there exists an integer d such that $\ell = dn$), then the condition $i+j \ge d+1$ is a necessary and sufficient condition for f = 0.

LEMMA 2.8. Let M and N be indecomposable non-projective A_n^{ℓ} -modules. Let $f \in \operatorname{Hom}_{A_n^{\ell}}(M, N)$ be a non-zero homomorphism such that $\operatorname{Im} f = \operatorname{rad}^t(N)$, where t is an integer such that there is no epimorphism from M to $\operatorname{rad}^s(N)$ for s < t. Then f = 0 if and only if $\operatorname{Hom}_{A_n^{\ell}}(M, N) = 0$.

Proof. " \Leftarrow " When $\underline{\operatorname{Hom}}_{A_n^{\ell}}(M, N) = 0$, it is clear that f = 0.

"⇒" If f = 0, then $\ell(M) \stackrel{"}{+} t \ge \ell + 1$ by Lemma 2.6. For any morphism g in $\operatorname{Hom}_{A_n^\ell}(\overline{M}, N)$, since there is no epimorphism from M to $\operatorname{rad}^s(N)$ (s < t), we have $\operatorname{Im} g = \operatorname{rad}^s(N)$ for some integer s, where $s \ge t$. Therefore $\ell(M) + s \ge \ell + 1$, and again by Lemma 2.6, g = 0. This shows $\operatorname{Hom}_{A_n^\ell}(M, N) = 0$.

LEMMA 2.9. Let A_n^{ℓ} be a self-injective Nakayama algebra, and M and N indecomposable non-projective A_n^{ℓ} -modules. If $\underline{\operatorname{Hom}}_{A_n^{\ell}}(M,N) = 0$ and $\underline{\operatorname{Hom}}_{A_n^{\ell}}(N,M) = 0$, then $\operatorname{top}(M) \ncong \operatorname{top}(N)$ and $\operatorname{soc}(M) \ncong \operatorname{soc}(N)$.

Proof. If $top(M) \cong top(N)$ (respectively $soc(M) \cong soc(N)$), then M is a quotient module (respectively submodule) of N or N is a quotient module (respectively submodule) of M, which contradicts the assumption.

We now describe when the ν -orbit $O_{\nu}(M)$ of an indecomposable nonprojective A_n^{ℓ} -module M forms an orthogonal system in A_n^{ℓ} -mod.

PROPOSITION 2.10. Let $A = A_n^{\ell}$ be a self-injective Nakayama algebra and M an indecomposable non-projective A-module. Then the ν -orbit $O_{\nu}(M)$ of M is an orthogonal system in A_n^{ℓ} -mod if and only if $\ell(M) \leq e$ or $\ell+1-e \leq \ell(M) \leq \ell$, where $e = \gcd(n, \ell)$.

Proof. " \Leftarrow " When $\ell(M) \leq e$, since any two composition factors of M are not isomorphic and top(M) is not a composition factor of the objects in $O_{\nu}(M)$ except M, it is clear that $O_{\nu}(M)$ is an orthogonal system in A_{n}^{ℓ} -mod.

When $\ell + 1 - e \leq \ell(M) \leq \ell$, for any object N in $O_{\nu}(M)$, consider the morphisms f from N to $\tau^{-e}(N)$ satisfying $\operatorname{Im} f = \operatorname{rad}^{e}(\tau^{-e}(N))$ and g from N to N satisfying $\operatorname{Im} g = \operatorname{rad}^{n}(N)$. Notice that by Lemma 2.5, $\ell(N) = \ell(M)$. So by Lemma 2.6, f = 0 and g = 0. Furthermore, by Lemma 2.8, $\operatorname{Hom}_{A}(N, N) \cong k$ and $\operatorname{Hom}_{A}(N, \tau^{-e}(N)) = 0$ if $\tau^{-e}(N) \ncong N$. There is a similar proof for N and $\tau^{-ke}(N)$ ($\tau^{-ke}(N) \ncong N, k \in \mathbb{N}$). Therefore $O_{\nu}(M)$ is an orthogonal system in A_{n}^{ℓ} -mod because of the arbitrariness of the module N.

"⇒" Consider the morphism f from M to $\tau^{-e}(M)$ satisfying Im $f = \operatorname{rad}^{e}(\tau^{-e}(M))$. If f = 0, then $\ell(\tau^{-e}(M)) = \ell(M) \leq e$. If $f \neq 0$, then since $\operatorname{Hom}_{A}(M, \tau^{-e}(M)) = 0$, by Lemma 2.6 we have $\ell + 1 - e \leq \ell(M) \leq \ell$.

For any symmetric Nakayama algebra, the Nakayama functor is isomorphic to the identity functor and therefore we have the following corollary.

COROLLARY 2.11. Let $A_n^{dn} = kQ/I$ be a symmetric Nakayama algebra and $M = M_{j,t}^i$ an indecomposable non-projective A_n^{dn} -module. Then the following are equivalent:

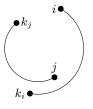
(1) $\underline{\operatorname{Hom}}_{A_n^{dn}}(M, M) \cong k$, that is, M is a stable brick. (2) $\ell(M) \leq n \text{ or } (d-1)n + 1 \leq \ell(M) \leq dn.$ (3) t = 0 or t = d - 1.

3. Orthogonality for A_n^{dn} . In this section, we introduce the arc for indecomposable A_n^{ℓ} -modules and use it to describe orthogonality in the stable module category of any symmetric Nakayama algebra.

DEFINITION 3.1. Let $A_n^{\ell} = kQ/I$ be a self-injective Nakayama algebra. For any indecomposable A_n^{ℓ} -module $M = M_{j,t}^i$, the *arc* of M is defined to be the (unique) shortest path \hat{ij} from vertex i to vertex j in Q. In particular, if i = j, then the arc of M is vertex i in Q.

Notice that we also regard Q as an oriented geometric graph, thus the arc of M means the segment from i to j in Q. We now use the arc to describe the orthogonality relation between stable bricks over the symmetric Nakayama algebra A_n^{dn} .

LEMMA 3.2. Let $M = M_{k_i,l_i}^i$ $(i \neq k_i, k_i - 1)$ and $N = N_{k_j,l_j}^j$ be stable bricks over A_n^{dn} . If their arcs intersect as follows (this means that $j \in \widehat{ik_i}, k_i \in \widehat{jk_j}, k_j \in \widehat{ji}$ and $k_j \neq i$):



then $\underline{\operatorname{Hom}}_{A_n^{dn}}(N, M) \neq 0.$

Proof. If $l_i = 0$, then $\ell(M) \leq n$ and there exists a unique integer t satisfying top(rad^t(M)) $\cong S_j$. Therefore, there is a morphism f from N to M satisfying Im $f = \operatorname{rad}^t(M)$ and the multiplicity of S_i in $M/\operatorname{rad}^t(M)$ is 1. By Corollary 2.11, there are two cases for l_j :

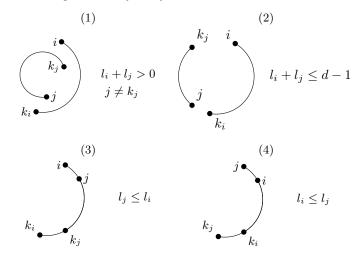
When $l_j = 0$, we can read off from the picture that S_i is not a composition factor of N, and $\ell(N) + t \leq n < dn + 1$. By Lemma 2.6, $f \neq 0$ and therefore $\underline{\text{Hom}}_{A_n^{dn}}(N, M) \neq 0$. When $l_j = d - 1$, the multiplicity of S_i in N is d - 1, and $\ell(N) + t \leq dn < dn + 1$. By Lemma 2.6, $\underline{f} \neq 0$ and therefore $\underline{\text{Hom}}_{A_n^{dn}}(N, M) \neq 0$.

If $l_i = d - 1$, then there is a minimum integer t_1 with top $(\operatorname{rad}^{t_1}(M)) \cong S_j$ and a maximum integer t_2 satisfying top $(\operatorname{rad}^{t_2}(M)) \cong S_j$. Again we consider two cases for l_j :

When $l_j = 0$, we also read off from the picture that S_i is not a composition factor of N and there is a morphism f from N to M satisfying $\text{Im } f = \text{rad}^{t_2}(M)$, and $\ell(N) + t_2 \leq dn < dn + 1$. By Lemma 2.6, $\underline{f} \neq 0$ and therefore $\underline{\text{Hom}}_{A_n^{dn}}(N, M) \neq 0$. When $l_j = d - 1$, there is a morphism f from N to M satisfying $\text{Im } f = \text{rad}^{t_1}(M)$, and $\ell(N) + t_1 \leq dn < dn + 1$. By Lemma 2.6, $\underline{f} \neq 0$ and therefore $\underline{\text{Hom}}_{A_n^{dn}}(N, M) \neq 0$.

PROPOSITION 3.3. Let $A_n^{dn} = kQ/I$ $(d \ge 2)$ be a symmetric Nakayama algebra and let $M = M_{k_i,l_i}^i$, $N = N_{k_j,l_j}^j$ be indecomposable non-projective A_n^{dn} -modules. Then $\{M, N\}$ is an orthogonal system in A_n^{dn} -mod if and only if it satisfies the following conditions:

- (a) $i \neq j$ and $k_i \neq k_j$.
- (b) $l_i = 0$ or $l_i = d 1$, while $l_j = 0$ or $l_j = d 1$.
- (c) Their arcs belong to one of the four cases:



where the two arcs in (2) are disjoint and in the other cases the two arcs do intersect.

Proof. " \Rightarrow " (a) and (b) follow from Lemma 2.9 and Corollary 2.11. The four pictures of arcs in (1)–(4) follow from Lemma 3.2; we just need to verify the conditions for l_i and l_j in four cases.

CASE 1. If $l_i = l_j = 0$, then there is a unique integer t satisfying $\operatorname{top}(\operatorname{rad}^t(M)) \cong S_j$ such that the multiplicity of S_i in $M/\operatorname{rad}^t(M)$ is 1, and there is a morphism $f: N \to M$ satisfying $\operatorname{Im} f = \operatorname{rad}^t(M)$. Since the multiplicity of S_i in N is 1 and $d \ge 2$, by Remark 2.7 we have $\underline{f} \neq 0$. This contradiction shows that $l_i + l_j > 0$.

CASE 2. If $l_i = d - 1$, $l_j = d - 1$, then the multiplicity of S_i in N is d - 1 and the multiplicity of S_j in M is d - 1. There exists a minimum integer t satisfying top $(\operatorname{rad}^t(M)) \cong S_j$ such that the multiplicity of S_i in $M/\operatorname{rad}^t(M)$ is 1. There is a morphism $f: N \to M$ satisfying $\operatorname{Im} f = \operatorname{rad}^t(M)$. By Remark 2.7, $f \neq 0$. This contradiction shows that $l_i + l_j \leq d - 1$.

CASE 3. If $l_i = 0$, $l_j = d - 1$, then the multiplicity of S_i in N is d - 1 and the multiplicity of S_j in M is 1. There exists a unique integer t satisfying $top(rad^t(M)) \cong S_j$ such that the multiplicity of S_i in $M/rad^t(M)$ is 1, and there is a morphism $f: N \to M$ satisfying $\operatorname{Im} g = rad^t(M)$. By Remark 2.7, $f \neq 0$. This contradiction shows that $l_j \leq l_i$.

CASE 4. If $l_i = d - 1$, $l_j = 0$, then we can show similarly to Case 3 that $l_i \leq l_j$.

" \Leftarrow " By Corollary 2.11, we can assume that $M = M_{k_i,l_i}^i$ and $N = N_{k_j,l_j}^j$ are stable bricks in A_n^{dn} -mod satisfying the following conditions: $i \neq j, k_i \neq k_j$, and l_i is 0 or d-1, while l_j is 0 or d-1.

We now prove that $\underline{\text{Hom}}_{A_n^{dn}}(M, N) = 0$ and $\underline{\text{Hom}}_{A_n^{dn}}(N, M) = 0$ by checking the four cases. In each case, we consider three subcases according to the values of l_i and l_j .

CASE 1. (i) When $l_i = 0$, $l_j = d - 1$, the multiplicity of S_i in N is dand the multiplicity of S_j in M is 1. There is a maximum integer t_1 satisfying top $(\operatorname{rad}^{t_1}(N)) \cong S_i$ such that the multiplicity of S_j in $N/\operatorname{rad}^{t_1}(N)$ is d. There exists a morphism $f: M \to N$ satisfying $\operatorname{Im} f = \operatorname{rad}^{t_1}(N)$. By Remark 2.7, $\underline{f} = 0$, and by Lemma 2.8, $\operatorname{Hom}_{A_n^{dn}}(M, N) = 0$. Moreover, there is a unique integer t_2 satisfying top $(\operatorname{rad}^{t_2}(M)) \cong S_j$ and a morphism $g: N \to M$ satisfying $\operatorname{Im} g = \operatorname{rad}^{t_2}(M)$. By Remark 2.7, $\underline{g} = 0$, and by Lemma 2.8, $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$.

(ii) When $l_i = d - 1$, $l_j = 0$, the multiplicity of S_i in N is 1 and the multiplicity of S_j in M is d. There is a description similar to (i) for this case, and we have $\underline{\operatorname{Hom}}_{A_n^{dn}}(N, M) = 0$ and $\underline{\operatorname{Hom}}_{A_n^{dn}}(M, N) = 0$.

(iii) When $l_i = d - 1$, $l_j = d - 1$, the multiplicity of S_i in N is d and the multiplicity of S_j in M is d. There is a minimum integer t_1 satisfying $top(rad^{t_1}(N)) \cong S_i$ such that the multiplicity of S_j in $N/rad^{t_1}(N)$ is 1. There exists a morphism $f: M \to N$ satisfying $Im f = rad^{t_1}(N)$. By Remark 2.7, $\underline{f} = 0$, and by Lemma 2.8, $\underline{Hom}_{A_n^{dn}}(M, N) = 0$. Similarly, there is a minimum integer t_2 satisfying $top(rad^{t_2}(M)) \cong S_j$ such that the multiplicity of S_i in $M/\operatorname{rad}^{t_2}(M)$ is 1. There is a morphism $g: N \to M$ satisfying $\operatorname{Im} g = \operatorname{rad}^{t_2}(M)$. By Remark 2.7, g = 0, and by Lemma 2.8, $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$.

CASE 2. (i) When $l_i = 0$, $l_j = 0$, S_j is not a composition factor of M and S_i is not a composition factor of N. Then $\operatorname{Hom}_{A_n^{dn}}(M, N) = 0$, $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$ and therefore $\operatorname{Hom}_{A_n^{dn}}(M, N) = 0$, $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$.

(ii) When $l_i = 0$, $l_j = d - 1$, S_j is not a composition factor of Mand the multiplicity of S_i in N is d - 1. Then $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$ and there is a maximum integer t satisfying $\operatorname{top}(\operatorname{rad}^t(N)) \cong S_i$, but $\ell(\operatorname{rad}^t(N)) > \ell(M)$, and we have $\operatorname{Hom}_{A_n^{dn}}(M, N) = 0$. Therefore, $\operatorname{Hom}_{A_n^{dn}}(M, N) = 0$ and $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$.

(iii) When $l_i = d - 1$, $l_j = 0$, S_i is not a composition factor of N and the multiplicity of S_j in M is d - 1. It follows much as above that $\underline{\operatorname{Hom}}_{A_n^{dn}}(M, N) = 0$, $\underline{\operatorname{Hom}}_{A_n^{dn}}(N, M) = 0$.

CASE 3. (i) When $l_i = 0$, $l_j = 0$, S_i is not a composition factor of N. Then $\operatorname{Hom}_{A_n^{dn}}(M, N) = 0$ and therefore $\operatorname{Hom}_{A_n^{dn}}(M, N) = 0$. There is a unique integer t satisfying $\operatorname{top}(\operatorname{rad}^t(M)) \cong S_j$, but $\ell(\operatorname{rad}^t(M)) > \ell(N)$, so we have $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$ and therefore $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$.

(ii) When $l_i = d - 1$, $l_j = 0$, S_i is not a composition factor of N. Then Hom_{$A_n^{dn}(M, N) = 0$ and therefore $\underline{\operatorname{Hom}}_{A_n^{dn}}(M, N) = 0$. There is a maximum integer t satisfying top $(\operatorname{rad}^t(M)) \cong S_j$, but $\ell(\operatorname{rad}^t(M)) > \ell(N)$. Then Hom_{$A_n^{dn}(N, M) = 0$} and $\underline{\operatorname{Hom}}_{A_n^{dn}}(N, M) = 0$.}

(iii) When $l_i = d - 1$, $l_j = d - 1$, the multiplicity of S_i in N is d - 1and the multiplicity of S_j in M is d. There exists a minimum integer t_1 satisfying top $(\operatorname{rad}^{t_1}(N)) \cong S_i$ such that the multiplicity of S_j in $N/\operatorname{rad}^{t_1}(N)$ is 1, and there is a morphism $f: M \to N$ satisfying $\operatorname{Im} f = \operatorname{rad}^{t_1}(N)$. By Remark 2.7, f = 0, and by Lemma 2.8, $\operatorname{Hom}_{A_n^{dn}}(M, N) = 0$. There exists an integer t_2 satisfying top $(\operatorname{rad}^{t_2}(M)) \cong S_j$ such that the multiplicity of S_i in $M/\operatorname{rad}^{t_2}(M)$ is 2, and there is a morphism $g: N \to M$ satisfying $\operatorname{Im} g =$ $\operatorname{rad}^{t_2}(M)$. By Remark 2.7, g = 0, and by Lemma 2.8, $\operatorname{Hom}_{A_n^{dn}}(N, M) = 0$.

CASE 4. This is similar to Case 3.

Summarizing the above discussion we see that $\{M, N\}$ is an orthogonal system in A_n^{dn} -mod.

REMARK 3.4. When d = 1, the assertion of Proposition 3.3 remains valid without the conditions for l_i and l_j in (c).

4. A construction of sms's over A_n^{ℓ}

4.1. Non-crossing partitions. In this subsection, we first introduce (classical) non-crossing partitions, and then we give some observations on the non-crossing partitions associated to sms's over A_n^{dn} .

DEFINITION 4.1 (cf. [10]). A partition of the set $\underline{n} := \{1, \ldots, n\}$ is a map p from \underline{n} to its power set with the following properties: (1) $i \in p(i)$ for all $1 \leq i \leq n$; (2) p(i) = p(j) or $p(i) \cap p(j) = \emptyset$ for all $1 \leq i, j \leq n$. We call p(i) a block of p. A non-crossing partition of \underline{n} is a partition p such that no two blocks cross each other, that is, if a and b belong to one block and x and y belong to another, we cannot have a < x < b < y.

We show how an sms S of A_n^{dn} relates to a non-crossing partition. By [9, Proposition 6.2], both the top and the socle series of S give a complete set $\{S_1, \ldots, S_n\}$ of simple A_n^{dn} -modules. For each $1 \leq i \leq n$, there is a subset $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ of \underline{n} such that there exists an object M_{ij} in S with $\operatorname{top}(M_{ij}) \cong S_{k_i^{(j)}}$, $\operatorname{soc}(M_{ij}) \cong S_{k_i^{(j+1)}}$ for each $0 \leq j \leq s_i - 1$, where $k_i^{(0)} = k_i^{(s_i)} = i, k_i^{(1)} = k_i$. In this way, we get a partition p of \underline{n} .

REMARK 4.2. Since we have the subset $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ of \underline{n} for each $1 \leq i \leq n$, we can define a permutation σ of \underline{n} such that $\sigma(i) = k_i$ for any i in \underline{n} . Moreover, $\sigma^j(i) = k_i^{(j)}$ for each $2 \leq j \leq s_i - 1$.

EXAMPLE 4.3. Consider

$$S = \left\{ \begin{array}{ccc} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 4 & 2 \\ 4 & 1 & 2 \\ 1 & 2 \end{array} \right\}$$

in A_4^4 -mod. Here we use Loewy diagrams to specify indecomposable modules for simplicity. By Theorem 2.3, S is an sms of A_4^4 . By the definition of p(i), we have $p(1) = p(2) = p(3) = \{3, 2, 1\}$ and $p(4) = \{4\}$. Moreover, the permutation σ of $\underline{4}$ defined in Remark 4.2 is as follows: $\sigma(1) = 3$, $\sigma(2) = 1$, $\sigma(3) = 2$ and $\sigma(4) = 4$.

From now on we fix the following notations: S is an sms of A_n^{dn} , and p is the corresponding partition. For each $1 \leq i \leq n$, the block $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ is as explained above, that is, there exists an object M_{ij} in S satisfying $top(M_{ij}) \cong S_{k_i^{(j)}}$ and $soc(M_{ij}) \cong S_{k_i^{(j+1)}}$ for each $0 \leq j \leq s_i - 1$, where $k_i^{(0)} = k_i^{(s_i)} = i$, $k_i^{(1)} = k_i$.

By Proposition 3.3, the partition p has the following "anti-clockwise" property.

COROLLARY 4.4. Let S be an sms of $A_n^{dn} = kQ/I$ and p the partition obtained as above. Suppose that $p(i) = \{i, k_i, k_i^{(2)}, \dots, k_i^{(s_i-1)}\}$, where $s_i \ge 3$. Then $k_i^{(t)}$ is a vertex on the arc $ik_i^{(t-1)}$ in the quiver Q for each $2 \le t \le s_i - 1$.

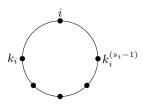
Proof. First, we consider the objects M_{i0} and M_{i1} in S, where $\{M_{i0}, M_{i1}\}$ is an orthogonal system in A_n^{dn} -mod and $top(M_{i0}) \cong S_i$, $soc(M_{i0}) \cong S_{k_i}$,

 $\operatorname{top}(M_{i1}) \cong S_{k_i}$, $\operatorname{soc}(M_{i1}) \cong S_{k_i^{(2)}}$. Their arcs must be as in case (1) of Proposition 3.3(c). Then $k_i^{(2)}$ is a vertex on the arc $\widehat{ik_i}$ from vertex i to vertex k_i . Similarly, when $s_i \ge 4$, $k_i^{(t)}$ is a vertex on the arc $\widehat{ik_i^{(t-1)}}$ for each $3 \le t \le s_i - 1$.

We are ready to prove that the above partition p corresponding to S is actually a non-crossing partition.

COROLLARY 4.5. Let S be an sms of A_n^{dn} and p the partition corresponding to S. Then p is a non-crossing partition of \underline{n} .

Proof. With the above notations, $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ and there exists an object M_{ij} in S satisfying $\operatorname{top}(M_{ij}) \cong S_{k_i^{(j)}}$ and $\operatorname{soc}(M_{ij}) \cong S_{k_i^{(j+1)}}$ for each $0 \leq j \leq s_i - 1$, where $k_i^{(0)} = k_i^{(s_i)} = i$, $k_i^{(1)} = k_i$. Take two different blocks $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ and $p(j) = \{j, k_j, k_j^{(2)}, \ldots, k_j^{(s_j-1)}\}$. By Corollary 4.4, we have the following graph of vertices in p(i):



Without loss of generality we can assume that vertex j lies on the arc $\widehat{k_i i}$. We claim that $k_j, k_j^{(2)}, \ldots, k_j^{(s_j-1)}$ are also vertices on $\widehat{k_i i}$. Otherwise, without loss of generality we can assume that k_j is a vertex on $\widehat{ik_i}$. Moreover, there exist objects M_{i0} in S satisfying $\operatorname{top}(M_{i0}) \cong S_i$, $\operatorname{soc}(M_{i0}) \cong S_{k_i}$ and M_{j0} in S satisfying $\operatorname{top}(M_{j0}) \cong S_j$, $\operatorname{soc}(M_{j0}) \cong S_{k_j}$. By Lemma 3.2, $\operatorname{Hom}_{A_n^{dn}}(M_{i0}, M_{j0}) \neq 0$. This is a contradiction.

Therefore, p is a non-crossing partition.

In the next two results, we use non-crossing partitions to describe some properties of sms's.

LEMMA 4.6. Let S be an sms of A_n^{dn} $(d \ge 2)$ and p the corresponding non-crossing partition. For each $1 \le i \le n$, let $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ be as above. For each $0 \le j \le s_i - 1$, assume that $M_{ij} = M_{k_i^{(j+1)}, l_{ij}}^{k_i^{(j)}}$ for some $l_{ij} \ge 0$. Then there is at most one l_{ij} satisfying $l_{ij} = 0$ for all $0 \le j \le s_i - 1$.

Proof. If $s_i = 1$, then $p(i) = \{i\}$ and the desired result follows.

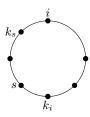
If $s_i \ge 2$, without loss of generality we can assume $l_{i0} = 0$. When $s_i \ge 3$, we use Corollary 4.4. Notice that $k_i^{(2)} = i$ when $s_i = 2$. Then, regardless of whether $s_i \ge 3$ or $s_i = 2$, the arcs of M_{i0} and M_{ij} are as follows for any

 $1 \leq j \leq s_i - 1$:

Since $\{M_{i0}, M_{ij}\}$ is an orthogonal system in A_n^{dn} -mod, by Proposition 3.3 we must have $l_{ij} = d - 1$ for each $1 \le j \le s_i - 1$.

LEMMA 4.7. Let S be an sms of A_n^{dn} $(d \ge 2)$ and p the corresponding non-crossing partition. For each $1 \le i \le n$, let $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ be as above. For each $0 \le j \le s_i - 1$, assume that $M_{ij} = M_{k_i^{(j+1)}, l_{ij}}^{k_i^{(j)}}$ for some $l_{ij} \ge 0$. Suppose that there exists some i satisfying $l_{ij} = d - 1$ for all $0 \le j \le s_i - 1$. Then, for any block p(s) different from p(i) there is only one t such that $l_{st} = 0$.

Proof. Without loss of generality we can assume the vertices in p(i) and in p(s) are located as follows:



Consider the modules $M_{k_s,l_{s0}}^s$ and $M_{k_i,l_{i0}}^i$. Since $\{M_{k_s,l_{s0}}^s, M_{k_i,l_{i0}}^i\}$ is an orthogonal system in A_n^{dn} -mod, by Proposition 3.3 we must have $l_{s0} = 0$. Moreover, by Lemma 4.6, l_{s0} is unique.

4.2. The construction of sms's. In this subsection, we give an explicit construction of sms's over any self-injective Nakayama algebra. We first construct sms's of a symmetric Nakayama algebra and then use covering theory to deal with the general case.

We denote by \mathcal{P} the set of non-crossing partitions of $\underline{n} = \{1, \ldots, n\}$ and given $i \in \mathbb{Z}$, let \overline{i} be the positive integer in \underline{n} such that $i \equiv \overline{i} \mod n$. For $p \in \mathcal{P}$, let $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ (with the ordering as in Corollary 4.4, when $s_i \geq 3$) be the block for $1 \leq i \leq n$ and let \widehat{i} be the set $\{i, \overline{i+1}, \ldots, k_i\}$. With these notations, we introduce the following definition.

DEFINITION 4.8. Let A_n^{dn} be a symmetric Nakayama algebra and \mathcal{P} the set of non-crossing partitions of \underline{n} , where n, d are positive integers. For any $p \in \mathcal{P}$ and any $1 \leq k \leq n$, we define two types of sets of indecomposable

 A_n^{dn} -modules:

$$\mathcal{L}_{p,k} = \{ M_{k_i, l_i}^i \mid i = 1, \dots, n \}, \text{ where } l_i = \begin{cases} 0, & i \cap p(k) = \emptyset, \\ d - 1, & otherwise; \end{cases}$$
$$\mathcal{S}_{p,k} = \{ M_{k_i, l_i}^i \mid i = 1, \dots, n \}, \text{ where } l_i = \begin{cases} 0, & \hat{i} \cap p(k) = \emptyset, \\ 0, & i = k, \\ d - 1, & otherwise. \end{cases}$$

REMARK 4.9. From the above definition, the cardinalities of $\mathcal{L}_{p,k}$ and $\mathcal{S}_{p,k}$ are equal to the number of non-isomorphic simple A_n^{dn} -modules. If $d \geq 2$, we have the following facts about $\mathcal{L}_{p,k}$ and $\mathcal{S}_{p,k}$. Let $p \in \mathcal{P}$ and $1 \leq k \leq n$. The modules M_{k_i,l_i}^i with $i \in p(k)$ in $\mathcal{L}_{p,k}$ satisfy $l_i = d - 1$, and for each block p(t) different from p(k) there exists a unique module M_{k_i,l_i}^i in $\mathcal{L}_{p,k}$ satisfying $i \in p(t)$ and $l_i = 0$. Moreover, for each block p(t), there exists a unique module M_{k_i,l_i}^i in $\mathcal{S}_{p,k}$ satisfying $i \in p(t)$ and $l_i = 0$.

THEOREM 4.10. Let A_n^{dn} be a symmetric Nakayama algebra and \mathcal{P} the set of non-crossing partitions of <u>n</u>. Then we have the following:

- (a) For any $p \in \mathcal{P}$ and any $1 \leq k \leq n$, $\mathcal{L}_{p,k}$ and $\mathcal{S}_{p,k}$ are sms's.
- (b) All sms's of A_n^{dn} are of these forms.
- (c) If $d \ge 2$, then for $p, p' \in \mathcal{P}$ and $1 \le k, k' \le n$, we have the following results:

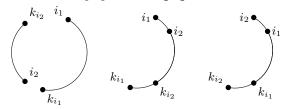
(1)
$$\mathcal{L}_{p,k} \neq \mathcal{S}_{p',k'}$$
.
(2) $\mathcal{L}_{p,k} = \mathcal{L}_{p',k'}$ if and only if $p = p'$ and $p(k) = p(k')$.
(3) $\mathcal{S}_{p,k} = \mathcal{S}_{p',k'}$ if and only if the following three conditions hold:
(i) $p = p'$; (ii) $k = k'$ or $\hat{k} \cap \hat{k'} = \emptyset$; (iii) $p_{k \vee k'} \in \mathcal{P}$, where

$$p_{k \vee k'}(i) = \begin{cases} p(k) \cup p(k'), & i \in p(k) \cup p(k'), \\ p(i), & otherwise. \end{cases}$$

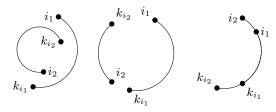
Proof. (a) We only prove that $\mathcal{L}_{p,k}$ is an sms, since the proof for $\mathcal{S}_{p,k}$ is similar. Since the Nakayama functor ν is isomorphic to the identity functor, $\mathcal{L}_{p,k}$ is Nakayama-stable. By Theorem 2.3, it is enough to show that any two objects $M_{k_{i_1},l_{i_1}}^{i_1}$ and $M_{k_{i_2},l_{i_2}}^{i_2}$ $(i_1 \neq i_2)$ in $\mathcal{L}_{p,k}$ $(p \in \mathcal{P}, 1 \leq k \leq n)$ form an orthogonal system in A_n^{dn} -mod. When d = 1, $l_{i_1} = l_{i_2} = 0$, since p is a non-crossing partition, there are four cases for the arcs of $M_{k_{i_1},l_{i_1}}^{i_1}$ and $M_{k_{i_2},l_{i_2}}^{i_2}$ corresponding to the four diagrams of Proposition 3.3. It follows from Remark 3.4 that $\{M_{k_{i_1},l_{i_1}}^{i_1}, M_{k_{i_2},l_{i_2}}^{i_2}\}$ is an orthogonal system in A_n^{dn} -mod.

When $d \ge 2$, by the definition of $\mathcal{L}_{p,k}$, we consider four cases (1)–(4). In each case it is straightforward to check by Proposition 3.3 that $\{M_{k_{i_1},l_{i_1}}^{i_1}, M_{k_{i_2},l_{i_2}}^{i_2}\}$ is an orthogonal system in A_n^{dn} -mod. We now list all the cases:

(1) $l_{i_1} = l_{i_2} = 0$, that is, $\hat{i_1} \cap p(k) = \emptyset$, $\hat{i_2} \cap p(k) = \emptyset$. There are three subcases for the arcs of $M_{k_{i_1}, l_{i_1}}^{i_1}$ and $M_{k_{i_2}, l_{i_2}}^{i_2}$:

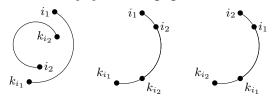


(2) $l_{i_1} = 0$, $l_{i_2} = d - 1$, that is, $\hat{i_1} \cap p(k) = \emptyset$, $\hat{i_2} \cap p(k) \neq \emptyset$. There are three subcases for the arcs of $M_{k_{i_1}, l_{i_1}}^{i_1}$ and $M_{k_{i_2}, l_{i_2}}^{i_2}$:



(3) $l_{i_1} = d-1$, $l_{i_2} = 0$, that is, $\hat{i_1} \cap p(k) \neq \emptyset$, $\hat{i_2} \cap p(k) = \emptyset$. This is similar to Case (2).

(4) $l_{i_1} = l_{i_2} = d - 1$, that is, $\hat{i_1} \cap p(k) \neq \emptyset$, $\hat{i_2} \cap p(k) \neq \emptyset$. There are three subcases for the arcs of $M_{k_{i_1}, l_{i_1}}^{i_1}$ and $M_{k_{i_2}, l_{i_2}}^{i_2}$:



(b) By Corollary 4.5, any sms S of A_n^{dn} determines a non-crossing partition p in \mathcal{P} . For $1 \leq i \leq n$, we denote by p(i) the block which i belongs to. Then we can assume that $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ and there exists M_{ij} in S satisfying $\operatorname{top}(M_{ij}) \cong S_{k_i^{(j)}}$ and $\operatorname{soc}(M_{ij}) \cong S_{k_i^{(j+1)}}$ for each $0 \leq j \leq s_i - 1$, where $k_i^{(0)} = k_i^{(s_i)} = i, k_i^{(1)} = k_i$. Notice that with our notation, $M_{ij} = M_{k_i^{(j+1)}, l_{ij}}^{k_i^{(j)}}$ for $0 \leq j \leq s_i - 1$ (cf. Lemmas 4.6 and 4.7).

If there is a block p(i) satisfying $l_{ij} = d - 1$ for each $0 \le j \le s_i - 1$, then from the proof of Lemma 4.7, we know for each block p(s) that

$$l_{st} = \begin{cases} 0, & \widehat{k_s^{(t)}} \cap p(i) = \emptyset, \\ d - 1, & \text{otherwise.} \end{cases}$$

Therefore $\mathcal{S} = \mathcal{L}_{p,i}$.

If there is no block p(i) satisfying $l_{ij} = d - 1$ for each $0 \le j \le s_i - 1$, suppose that $p(i_1), \ldots, p(i_k)$ are all blocks; by Lemma 4.6, without loss of generality, we assume $l_{i_t0} = 0$ for any block $p(i_t)$. We have $l_{i_tj} = d - 1$ for $j \ne 0$. Then there exists some i in $\{i_1, \ldots, i_k\}$ satisfying $\hat{i_t} \cap p(i) = \emptyset$ for any $i_t \ne i$. It follows easily that S must have the form $S_{p,i}$.

(c) (1) This follows easily from Remark 4.9. More precisely, if $d \ge 2$, then for each block p'(t) there exists a unique M_{k_i,l_i}^i in $\mathcal{S}_{p',k'}$ with $i \in p'(t)$ and $l_i = 0$; however, all the modules M_{k_i,l_i}^i in $\mathcal{L}_{p,k}$ which correspond to the block p(k) satisfy $l_i = d - 1$ for any i in this block. Therefore $\mathcal{L}_{p,k} \neq \mathcal{S}_{p',k'}$ for any p, p', k, k'.

(2) If p = p', p(k) = p(k'), then by the definitions of $\mathcal{L}_{p,k}$ and $\mathcal{L}_{p,k'}$ we have $\mathcal{L}_{p,k} = \mathcal{L}_{p',k'}$.

If $\mathcal{L}_{p,k} = \mathcal{L}_{p',k'}$, then p = p'. Otherwise, there exist M_{k_i,l_i}^i in $\mathcal{L}_{p,k}$ and $M_{k'_i,l'_i}^i$ in $\mathcal{L}_{p',k'}$ with $k_i \neq k'_i$, and therefore $M_{k_i,l_i}^i \neq M_{k'_i,l'_i}^i$, which contradicts $\mathcal{L}_{p,k} = \mathcal{L}_{p',k'}$. Assume now that $\mathcal{L}_{p,k} = \mathcal{L}_{p,k'}$. We have $l_i = d - 1$ for M_{k_i,l_i}^i in $\mathcal{L}_{p,k}$, where $i \in p(k)$ or $i \in p(k')$. By Lemma 4.7, there is only one such block for $\mathcal{L}_{p,k}$. Therefore p(k) = p(k').

(3) If $S_{p,k} = S_{p',k'}$, then p = p'. Otherwise, there exist $M_{k_i,l_i}^i \in S_{p,k}$ and $M_{k'_i,l'_i}^i \in S_{p',k'}$ with $k_i \neq k'_i$, and therefore $M_{k_i,l_i}^i \neq M_{k'_i,l'_i}^i$, contradicting $S_{p,k} = S_{p',k'}$. Assume now that $S_{p,k} = S_{p,k'}$ and $k \neq k'$. By the definition of $S_{p,k}, S_{p,k} = S_{p,k'}$ if and only if the following conditions hold:

- $\hat{k} \cap p(k') = \emptyset;$
- $\widehat{k'} \cap p(k) = \emptyset;$
- $\hat{i} \cap p(k) = \emptyset$ if and only if $\hat{i} \cap p(k') = \emptyset$ for $i \neq k, k'$.

The first two conditions are equivalent to $\hat{k} \cap \hat{k'} = \emptyset$. Moreover, the last condition implies that $p_{k \vee k'}$ is also a non-crossing partition. Conversely, if $p_{k \vee k'}$ is a non-crossing partition, then clearly the last condition holds.

REMARK 4.11. (1) Notice that the partition associated with the sms $S_{p,k}$ or $\mathcal{L}_{p,k}$ (as discussed in Subsection 4.1) is exactly p.

(2) For an equivalent formulation of the condition $S_{p,k} = S_{p',k'}$, see Remark 5.6.

(3) For $1 \leq k, k' \leq n$, if d = 1, then $\mathcal{L}_{p,k} = \mathcal{L}_{p,k'} = \mathcal{S}_{p,k'}$.

EXAMPLE 4.12. We describe the sms's of the symmetric Nakayama algebra A_2^6 using the set \mathcal{P} of non-crossing partitions of $\underline{2}$. Since $\mathcal{P} = \{p_1, p_2\}$ where $p_1 = \{\{1\}, \{2\}\}, p_2 = \{\{1, 2\}\}$, we can directly write down all sms's

of A_2^6 from the definitions of $\mathcal{L}_{p,k}$ and $\mathcal{S}_{p,k}$:

$$\mathcal{L}_{p_{1},1} = \left\{ M_{1,2}^{1}, M_{2,0}^{2} \right\} = \left\{ \begin{array}{c} 1\\2\\1\\2\\2\\1 \end{array} \right\}, \quad \mathcal{L}_{p_{1},2} = \left\{ M_{1,0}^{1}, M_{2,2}^{2} \right\} = \left\{ \begin{array}{c} 2\\1\\1\\2\\1\\2 \end{array} \right\}, \quad \mathcal{L}_{p_{2},1} = \left\{ M_{2,0}^{1}, M_{1,2}^{2} \right\} = \left\{ \begin{array}{c} 2\\1\\1\\2\\2\\2\\1\\2 \end{array} \right\}, \quad \mathcal{S}_{p_{2},2} = \left\{ M_{2,2}^{1}, M_{1,0}^{2} \right\} = \left\{ \begin{array}{c} 1\\2\\1\\2\\2\\2\\1\\1\\2 \end{array} \right\}, \quad \mathcal{L}_{p_{2},1} = \mathcal{L}_{p_{2},2} = \left\{ M_{2,2}^{1}, M_{1,2}^{2} \right\} = \left\{ \begin{array}{c} 1\\2\\1\\2\\2\\2\\1\\1\\2 \end{array} \right\}, \quad \mathcal{S}_{p_{1},1} = \mathcal{S}_{p_{1},2} = \left\{ M_{1,0}^{1}, M_{2,0}^{2} \right\} = \left\{ 1, 2 \right\}.$$

In the following, using covering theory, we describe the sms's of a selfinjective Nakayama algebra A_n^{ℓ} . We first recall some notions.

DEFINITION 4.13 ([3, Definition 1.3]). A translation-quiver morphism $f: \Delta \to \Gamma$ is called a *covering* if for each point $p \in \Delta_0$ the induced maps $p^- \to f(p)^-$ and $p^+ \to f(p)^+$ are bijections. Furthermore, $\tau(p)$ and $\tau^-(q)$ should be defined if so are $\tau(f(p))$ and $\tau^-(f(q))$ respectively (of course, since f is a translation-quiver morphism, we have $f(\tau(p)) = \tau(f(p))$ whenever $\tau(p)$ is defined).

DEFINITION 4.14 ([3, Definition 3.1]). Let $F : \mathcal{C} \to \mathcal{D}$ be a k-linear functor between two k-categories. Then F is called a *covering functor* if the maps

$$\coprod_{z/b} \mathcal{C}(x,z) \to \mathcal{D}(a,b) \quad ext{and} \quad \coprod_{t/a} \mathcal{C}(t,y) \to \mathcal{D}(a,b),$$

induced by F, are bijective for any two objects a and b of \mathcal{D} . Here t and z range over all objects of \mathcal{C} such that Ft = a and Fz = b respectively; the maps are supposed to be bijective for all x and y chosen among the t and z respectively.

LEMMA 4.15. Let $A = A_n^{\ell}$ and $B = A_e^{\ell}$ be two self-injective Nakayama algebras such that e is the greatest common divisor of n and ℓ . Then there is

a covering of stable translation quivers π : ${}_{s}\Gamma_{A} \to {}_{s}\Gamma_{B} \cong {}_{s}\Gamma_{A}/\langle\nu\rangle$ (where ν is the Nakayama automorphism of ${}_{s}\Gamma_{A}$), which induces a covering functor F: $A-\underline{\mathrm{mod}} \to B-\underline{\mathrm{mod}}$. Consequently, if S is an orthogonal system in $B-\underline{\mathrm{mod}}$, then S is an sms of $B-\underline{\mathrm{mod}}$ if and only if $F^{-1}(S)$ is an sms of $A-\underline{\mathrm{mod}}$. Moreover, if S' is a Nakayama-stable orthogonal system in $A-\underline{\mathrm{mod}}$, then $F^{-1}(F(S')) = S'$ and therefore S' is an sms of $A-\underline{\mathrm{mod}}$ if and only if F(S')is an sms of $B-\underline{\mathrm{mod}}$. In particular, there is a bijection between the sms's of $A-\underline{\mathrm{mod}}$ and the sms's of $B-\underline{\mathrm{mod}}$ induced by F.

Proof. Clearly, there is a covering of stable translation quivers $\pi: {}_{s}\Gamma_{A} \rightarrow {}_{s}\Gamma_{B} \cong {}_{s}\Gamma_{A}/\langle\nu\rangle$, where ν is the Nakayama automorphism of ${}_{s}\Gamma_{A}$. It follows that there is a covering functor between the corresponding mesh categories (see [12, Section 2]) $k({}_{s}\Gamma_{A})$ and $k({}_{s}\Gamma_{B})$. On the other hand, since A and B are standard representation-finite self-injective algebras (see [1, Section 2]), we can identify $k({}_{s}\Gamma_{A})$ and $k({}_{s}\Gamma_{B})$ with A-ind and B-ind, respectively (see [6, Section 3]). Therefore we get a covering functor A-ind $\to B$ -ind, which extends to a covering functor F: A-mod $\to B$ -mod such that $F^{-1}(Y)$ is the ν -orbit of X for any object Y in B-ind, where F(X) = Y for some object X in A-ind. Hence, for an orthogonal system S in B-mod. Notice that $F(F^{-1}(S)) = S$.

We next show $F^{-1}(F(\mathcal{S}')) = \mathcal{S}'$ for any Nakayama-stable orthogonal system \mathcal{S}' in A-mod. It is easy to see $\mathcal{S}' \subseteq F^{-1}(F(\mathcal{S}'))$. On the other hand, for an object X in $F^{-1}(F(\mathcal{S}'))$, there is an object Y in \mathcal{S}' satisfying F(X) =F(Y) and therefore X is in the ν -orbit of Y. Since \mathcal{S}' is Nakayama-stable, X is also in \mathcal{S}' and $F^{-1}(F(\mathcal{S}')) \subseteq \mathcal{S}'$. Therefore $F^{-1}(F(\mathcal{S}')) = \mathcal{S}'$.

For a Nakayama-stable orthogonal system \mathcal{S}' in A-<u>mod</u>, using the formula $\coprod_{F(c)=F(b)} \underline{\operatorname{Hom}}_A(a,c) \cong \underline{\operatorname{Hom}}_B(F(a),F(b))$, we find that $F(\mathcal{S}')$ is an orthogonal system in B-<u>mod</u>. Since F is a covering functor, $F(\mathcal{S}')$ is an sms of B-<u>mod</u> if and only if $F^{-1}(F(\mathcal{S}')) = \mathcal{S}'$ is an sms of A-<u>mod</u>.

From the above discussion, we know that there is a bijection between the sms's of A-mod and the sms's of B-mod induced by F.

By the above lemma, for a self-injective Nakayama algebra A_n^{ℓ} , we know that S is an sms of A_e^{ℓ} -mod if and only if $F^{-1}(S)$ is an sms of A_n^{ℓ} -mod. Since e divides ℓ , A_e^{ℓ} is a symmetric Nakayama algebra and therefore we have two types of sms's $\mathcal{L}_{p,k}$ and $\mathcal{S}_{p,k}$, where $p \in \mathcal{P}$, $1 \leq k \leq e$, and \mathcal{P} is the set of non-crossing partitions of $\underline{e} = \{1, \ldots, e\}$. Using the above covering functor we define two classes of objects in A_n^{ℓ} -mod:

$$\mathcal{L}'_{p,k} := F^{-1}(\mathcal{L}_{p,k}), \quad \mathcal{S}'_{p,k} := F^{-1}(\mathcal{S}_{p,k}).$$

Notice that the covering functor F is induced from a covering of stable Auslander–Reiten quivers $\pi: {}_{s}\Gamma_{A_{p}^{\ell}} \rightarrow {}_{s}\Gamma_{A_{p}^{\ell}} \cong {}_{s}\Gamma_{A_{p}^{\ell}}/\langle \nu \rangle$ (where ν is the Nakayama automorphism of ${}_{s}\Gamma_{A_{n}^{\ell}}$), therefore it is very easy to construct $\mathcal{L}'_{p,k}$ and $\mathcal{S}'_{p,k}$ from $\mathcal{L}_{p,k}$ and $\mathcal{S}_{p,k}$ in practice. We have the following theorem.

THEOREM 4.16. Let A_n^{ℓ} be a self-injective Nakayama algebra and \mathcal{P} the set of non-crossing partitions of \underline{e} , where $e = \text{gcd}(n, \ell)$. Then we have the following:

- (a) For any $p \in \mathcal{P}$ and any $1 \leq k \leq e$, $\mathcal{L}'_{p,k}$ and $\mathcal{S}'_{p,k}$ are sms's.
- (b) All sms's of A_n^{ℓ} are of these forms.
- (c) If $\ell/e \geq 2$, then for $p, p' \in \mathcal{P}$ and $1 \leq k, k' \leq e$ we have the following results:
 - (1) $\mathcal{L}'_{p,k} \neq \mathcal{S}'_{p',k'}$. (2) $\mathcal{L}'_{p,k} = \mathcal{L}'_{p',k'}$ if and only if p = p' and p(k) = p(k'). (3) $\mathcal{S}'_{p,k} = \mathcal{S}'_{p',k'}$ if and only if the following three conditions hold: (i) p = p'; (ii) k = k' or $\hat{k} \cap \hat{k'} = \emptyset$; (iii) $p_{k \vee k'} \in \mathcal{P}$, where $(p(k) \cup p(k'), \quad i \in p(k) \cup p(k')$.

$$p_{k \lor k'}(i) = \begin{cases} p(k) \cup p(k'), & i \in p(k) \cup p(k'), \\ p(i), & otherwise. \end{cases}$$

Proof. By Lemma 4.15, there is a covering functor $F: A_n^{\ell} \operatorname{-} \operatorname{\underline{mod}} \to A_e^{\ell} \operatorname{-} \operatorname{\underline{mod}}$.

(a) For any $p \in \mathcal{P}$ and any $1 \leq k \leq e$, we have $\mathcal{L}'_{p,k} = F^{-1}(\mathcal{L}_{p,k})$ and $\mathcal{S}'_{p,k} = F^{-1}(\mathcal{S}_{p,k})$. Since $\mathcal{L}_{p,k}$ and $\mathcal{S}_{p,k}$ are sms's of A^{ℓ}_{e} -mod, by Lemma 4.15, $\mathcal{L}'_{p,k}$ and $\mathcal{S}'_{p,k}$ are sms's of A^{ℓ}_{n} -mod.

(b) Take an sms \mathcal{S}' of A_n^{ℓ} -mod. By Lemma 4.15, $F(\mathcal{S}')$ is an sms of A_e^{ℓ} -mod. By Theorem 4.10, $F(\mathcal{S}')$ is $\mathcal{L}_{p,k}$ or $\mathcal{S}_{p,k}$ for some $p \in \mathcal{P}$ and some $1 \leq k \leq e$. Moreover, by Lemma 4.15, $F^{-1}(F(\mathcal{S}')) = \mathcal{S}'$ and therefore \mathcal{S}' is $\mathcal{L}'_{p,k}$ or $\mathcal{S}'_{p,k}$ for some $p \in \mathcal{P}$ and some $1 \leq k \leq e$.

(c) By Lemma 4.15, there is a bijection between the sms's of A_n^{ℓ} -mod and of A_e^{ℓ} -mod induced by F. By Theorem 4.10, conditions (1)–(3) are satisfied.

EXAMPLE 4.17. We describe the sms's of the self-injective Nakayama algebra A_4^6 . We know the sms's of A_2^6 from Example 4.12. Let $\mathcal{P} = \{p_1, p_2\}$ be the set of non-crossing partitions of $\underline{2}$, where $p_1 = \{\{1\}, \{2\}\}, p_2 = \{\{1, 2\}\}$. Then we can easily write down all sms's of A_4^6 :

$$\mathcal{L}'_{p_1,1} = \begin{cases} 1 & 3 \\ 2 & 4 \\ 3 & 1 & 2 \\ 4 & 2 \\ 1 & 3 \end{cases}, \begin{array}{c} \mathcal{S}'_{p_2,1} = \begin{cases} 2 & 4 \\ 3 & 1 \\ 1 & 3 & 4 & 2 \\ 2 & 4 & 1 & 3 \\ 2 & 4 & 1 & 3 \\ 2 & 4 & 3 & 1 \\ \end{array}, \quad \mathcal{L}'_{p_1,2} = \begin{cases} 2 & 4 \\ 3 & 1 \\ 1 & 3 & 4 & 2 \\ 1 & 3 & 4 & 2 \\ 1 & 3 & 2 & 4 \\ 3 & 2 & 4 \\ \end{array},$$

$$\mathcal{S}_{p_{2},2}' = \begin{cases} 1 & 3 \\ 2 & 4 \\ 3 & 1 & 2 & 4 \\ 4 & 2 & 3 & 1 \\ 1 & 3 \\ 2 & 4 \end{cases}, \quad \mathcal{L}_{p_{2},1}' = \mathcal{L}_{p_{2},2}' = \begin{cases} 1 & 3 & 2 & 4 \\ 2 & 4 & 3 & 1 \\ 3 & 1 & 4 & 2 \\ 4 & 2 & 1 & 3 \\ 1 & 3 & 2 & 4 \\ 2 & 4 & 3 & 1 \end{cases}, \\ \mathcal{S}_{p_{1},1}' = \mathcal{S}_{p_{1},2}' = \{1, 3, 2, 4\}. \end{cases}$$

REMARK 4.18. In view of the observation in Remark 4.9, we will call $\mathcal{L}_{p,k}$ (or $\mathcal{L}'_{p,k}$) an sms of long type and $\mathcal{S}_{p,k}$ (or $\mathcal{S}'_{p,k}$) an sms of short type.

REMARK 4.19. Using some descriptions of non-crossing partitions from [11], Wenting Huang $(^1)$, an undergraduate student from BNU, devised an algorithm for constructing sms's over self-injective Nakayama algebras [8].

5. Sms's of A_n^{ℓ} under the (co)syzygy functor. This section is devoted to the behavior of sms's over A_n^{ℓ} under the (co)syzygy functor.

5.1. Permutations over the set \mathcal{P} of non-crossing partitions. We fix some notations from previous sections. We denote by \mathcal{P} the set of non-crossing partitions of $\underline{n} = \{1, \ldots, n\}$, and given $i \in \mathbb{Z}$ we denote by \overline{i} the positive integer in \underline{n} such that $i \equiv \overline{i} \mod n$. For $p \in \mathcal{P}$, we denote by p(i) the block which i belongs to and we assume that $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ with $i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}$ arranged anti-clockwise on the associated circle (cf. Corollary 4.4).

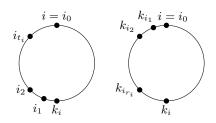
With any $p \in \mathcal{P}$ and $i \in \underline{n}$, we associate a subset p'(i) of \underline{n} , where $p'(i) = \{i_{t_i}, \ldots, i_1, i\}$ is defined as follows: $i = i_0 = i_{t_i+1}$ and $i_m = \overline{k_{i_{m-1}} + 1}$ for each $1 \leq m \leq t_i + 1$. Suppose that t is the least number satisfying $i_s = i_t$ for some $0 \leq s < t$. Then $i_t = i = i_0$, since otherwise, by the definitions of i_s and i_t , $\overline{k_{i_{s-1}} + 1} = \overline{k_{i_{t-1}} + 1}$, $k_{i_{s-1}} = k_{i_{t-1}}$, and therefore $i_{s-1} = i_{t-1}$, a contradiction. Thus p'(i) is well-defined. Moreover, with the above p and i, we associate another subset $p''(k_i)$ of \underline{n} , where $p''(k_i) = \{k_i, k_{i_1}, \ldots, k_{i_{r_i}}\}$ is defined as follows: $i = i_0, k_i = k_{i_{r_i+1}}$ and $k_{i_n} = \overline{i_{n-1} - 1}$ for each $1 \leq n \leq r_i + 1$. Similarly, we can show that $p''(k_i)$ is well-defined.

LEMMA 5.1. For any $p \in \mathcal{P}$, p' and p'' define two partitions of \underline{n} .

Proof. This is clear from the cyclic orderings in p'(i) and $p''(k_i)$.

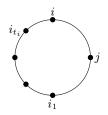
We illustrate the subsets p'(i) and $p''(k_i)$ in the following two pictures:

^{(&}lt;sup>1</sup>) Wenting Huang's email address: 877977235@qq.com.



LEMMA 5.2. Let the partitions p' and p'' be defined as above from the non-crossing partition p. Then p' and p'' are non-crossing partitions.

Proof. For any different blocks p'(i) and p'(j), we assume that p'(i) = $\{i_{t_i},\ldots,i_1,i\}$, where $i = i_0 = i_{t_i+1}$ and $i_m = \overline{k_{i_{m-1}}+1}$ for each $1 \leq i_{m-1}$ $m \leq t_i + 1$, and $p'(j) = \{j_{t_i}, \ldots, j_1, j\}$, where $j = j_0 = j_{t_i+1}$ and $j_m = j_0 = j_{t_i+1}$ $\overline{k_{j_{m-1}}+1}$ for each $1 \leq m \leq t_j + 1$. Without loss of generality, we assume that j is a vertex on the arc ii_1 , that is,



Since p is a non-crossing partition, k_i is a vertex on the arc ik_i . Therefore $j_1 = \overline{k_j + 1}$ is a vertex on the arc from vertex *i* to vertex i_1 . Similarly, any vertex in p'(j) is on the arc from i to i_1 . Thus p' is a non-crossing partition.

The proof for p'' is similar.

By the above lemma, we get two non-crossing partitions p' and p'' from any non-crossing partition p in \mathcal{P} . This suggests the following two self-maps of \mathcal{P} :

$$\mathcal{P} \xrightarrow{m_1} \mathcal{P}, \quad p \to p', \qquad \mathcal{P} \xrightarrow{m_2} \mathcal{P}, \quad p \to p''.$$

It is easy to check that $m_1m_2 = id$ and $m_2m_1 = id$, and therefore m_1 and m_2 are inverse bijections of \mathcal{P} .

EXAMPLE 5.3. Consider the non-crossing partition $p = \{\{1, 6, 4\}, \{2, 3\}, \}$ $\{5\}\}$ of 6. By a direct computation,

$$p \xrightarrow{m_1} p' \xrightarrow{m_2} p \xrightarrow{m_2} p'' \xrightarrow{m_1} p,$$

where $p' = \{\{1\}, \{4, 2\}, \{3\}, \{6, 5\}\}$ and $p'' = \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\}$.

5.2. The behaviors of sms's under Ω and Ω^{-1} . Recall that for any indecomposable A_n^{dn} -module M, if $top(M) \cong S_i$, $soc(M) \cong S_j$ and the multiplicity of S_i in M is k + 1, then we denote M by $M_{i,k}^i$. For any A_n^{dn} -module M_{k_i,l_i}^i , we have the following lemma about $\Omega(M_{k_i,l_i}^i)$ and $\Omega^{-1}(M_{k_i,l_i}^i)$, where Ω , Ω^{-1} denote the syzygy and cosyzygy functors respectively.

LEMMA 5.4. Let A_n^{dn} be a symmetric Nakayama algebra and M_{k_i,l_i}^i an indecomposable A_n^{dn} -module. Then $\Omega(M_{k_i,l_i}^i) \cong M_{i,d-l_i-1}^{k_i+1}$ and $\Omega^{-1}(M_{k_i,l_i}^i) \cong M_{i,d-l_i-1}^{k_i}$, where Ω , Ω^{-1} are the syzygy and cosyzygy functors respectively.

Proof. We only prove $\Omega(M_{k_i,l_i}^i) \cong M_{i,d-l_i-1}^{\overline{k_i+1}}$, since the other proof is dual. There is a short exact sequence

$$0 \to \Omega(M_{k_i,l_i}^i) \to P_i \to M_{k_i,l_i}^i \to 0,$$

where $P_i \to M_{k_i, l_i}^i$ is the projective cover of M_{k_i, l_i}^i .

We have $\Omega(M_{k_i,l_i}^i) \cong \operatorname{rad}^{nl_i+[k_i-i)+1}(P_i)$, where $[k_i-i)$ is the smallest nonnegative integer with $[k_i - i) = (k_i - i) \mod n$. Therefore, $\operatorname{top}(\Omega(M_{k_i,l_i}^i)) \cong$ $\operatorname{top}(\operatorname{rad}^{nl_i+[k_i-i)+1}(P_i)) \cong S_{\overline{k_i+1}}$ and $\operatorname{soc}(\Omega(M_{k_i,l_i}^i)) \cong \operatorname{soc}(P_i) \cong S_i$. Moreover, if $\overline{k_i+1} \neq \overline{i}$ (respectively $\overline{k_i+1} = \overline{i}$), then the multiplicity of $S_{\overline{k_i+1}}$ in P_i is d (respectively d+1) and the multiplicity of $S_{\overline{k_i+1}}$ in M_{k_i,l_i}^i is l_i (respectively l_i+1). Therefore the multiplicity of $S_{\overline{k_i+1}}$ in $\Omega(M_{k_i,l_i}^i)$ is $d-l_i$ and $\Omega(M_{k_i,l_i}^i) \cong M_{i,d-l_i-1}^{\overline{k_i+1}}$.

For $S_{p,k}$, we define $\Omega(S_{p,k}) = \{\Omega(M_{k_i,l_i}^i) \mid M_{k_i,l_i}^i \in S_{p,k}\}$ and $\Omega^{-1}(S_{p,k}) = \{\Omega^{-1}(M_{k_i,l_i}^i) \mid M_{k_i,l_i}^i \in S_{p,k}\}$. Similarly, for $\mathcal{L}_{p,k}$, we can define $\Omega(\mathcal{L}_{p,k})$ and $\Omega^{-1}(\mathcal{L}_{p,k})$. From the above lemma and notations, we have the following theorem.

THEOREM 5.5. Let A_n^{dn} be a symmetric Nakayama algebra and \mathcal{P} the set of non-crossing partitions of the set \underline{n} . For $p \in \mathcal{P}$ and $1 \leq i \leq n$, let $\mathcal{L}_{p,i}$ and $\mathcal{S}_{p,i}$ be as in Definition 4.8. Moreover, let m_1 and m_2 be permutations of \mathcal{P} defined as in Subsection 5.1, and let Ω , Ω^{-1} denote the syzygy and cosyzygy functors respectively. Then we have the following:

(1) $\Omega(\mathcal{S}_{p,i}) = \mathcal{L}_{p',i}, \text{ where } p' = m_1(p).$

(2) $\Omega^{-1}(\mathcal{L}_{p,i}) = \mathcal{S}_{p'',i}, \text{ where } p'' = m_2(p).$

- (3) $\Omega^{-1}(\mathcal{S}_{p,i}) = \mathcal{L}_{p'',k_i}$, where k_i is defined as in Subsection 5.1 and $p'' = m_2(p)$.
- (4) $\Omega(\mathcal{L}_{p,i}) = \mathcal{S}_{p',i_1}$, where $i_1 = \overline{k_i + 1}$ is defined as in Subsection 5.1 and $p' = m_1(p)$.

Proof. (1) Since $\Omega: A_n^{dn} \operatorname{-} \operatorname{\underline{mod}} \to A_n^{dn} \operatorname{-} \operatorname{\underline{mod}}$ is a stable equivalence, $\Omega(\mathcal{S}_{p,i})$ is also an sms. By Lemma 5.4, the non-crossing partition corresponding to $\Omega(\mathcal{S}_{p,i})$ is exactly $p' = m_1(p)$. For any vertex j, we denote by p(j) the block of the non-crossing partition p that j belongs to, and let $p(j) = \{j, k_j, k_j^{(2)}, \ldots, k_j^{(s_j-1)}\}$ and $\hat{j} = \{j, \overline{j+1}, \ldots, k_j\}$ be as before. Notice that

when j is an element in p'(i) different from i, we have $\hat{j} \cap p(i) = \emptyset$. Let $M_{k_j,l_j}^j \in \mathcal{S}_{p,i}$. Since $\operatorname{top}(M_{k_j,l_j}^j) \cong S_j$ and $\operatorname{soc}(M_{k_j,l_j}^j) \cong S_{k_j}$, $\operatorname{top}(\Omega(M_{k_j,l_j}^j)) \cong S_{\overline{k_j+1}}$ by Lemma 5.4. By the definition of $\mathcal{S}_{p,i}$, we find that if j is in p'(i), then $l_j = 0$ and therefore the multiplicity of $S_{\overline{k_j+1}}$ in $\Omega(M_{k_j,l_j}^j)$ is d. By Remark 4.9, we have $\Omega(\mathcal{S}_{p,i}) = \mathcal{L}_{p',i}$.

(2) Applying the functor Ω^{-1} to the equation in (1), we get the desired result.

(3) Since $\Omega^{-1}: A_n^{dn} \operatorname{-mod} \to A_n^{dn} \operatorname{-mod}$ is a stable equivalence, $\Omega^{-1}(\mathcal{S}_{p,i})$ is also an sms. By Lemma 5.4, the non-crossing partition corresponding to $\Omega^{-1}(\mathcal{S}_{p,i})$ is exactly $p'' = m_2(p)$. For any vertex j, we denote by p(j) the block of p that j belongs to. Let $p(i) = \{i, k_i, k_i^{(2)}, \ldots, k_i^{(s_i-1)}\}$ and $\hat{j} = \{j, \overline{j+1}, \ldots, k_j\}$ for any vertex j. Notice that when k_j is an element in $p''(k_i)$ different from k_i , we have $\hat{j} \cap p(i) = \emptyset$. Let $M_{k_j, l_j}^j \in \mathcal{S}_{p, i}$. Since $\operatorname{soc}(M_{k_j, l_j}^j) \cong S_{k_j}$, $\operatorname{top}(\Omega^{-1}(M_{k_j, l_j}^j)) \cong S_{k_j}$ by Lemma 5.4. By the definition of $\mathcal{S}_{p,i}$, if k_j is in $p''(k_i)$, then $l_j = 0$ and therefore the multiplicity of S_{k_j} in $\Omega^{-1}(M_{k_j, l_j}^j)$ is d. By Remark 4.9, we have $\Omega^{-1}(\mathcal{S}_{p,i}) = \mathcal{L}_{p'', k_i}$.

(4) Applying the functor Ω to the equation in (3), we get the desired result. \blacksquare

REMARK 5.6. Notice that for $p, p' \in \mathcal{P}$ and $1 \leq k, k' \leq n$, we find that $\mathcal{S}_{p,k} = \mathcal{S}_{p',k'}$ if and only if $\Omega(\mathcal{S}_{p,k}) = \Omega(\mathcal{S}_{p',k'})$, and by Theorem 5.5, if and only if $\mathcal{L}_{m_1(p),k} = \mathcal{L}_{m_1(p'),k'}$. By Theorem 4.10, for A_n^{dn} and $d \geq 2$, $\mathcal{S}_{p,k} = \mathcal{S}_{p',k'}$ if and only if p = p' and $m_1(p)(k) = m_1(p)(k')$.

EXAMPLE 5.7. Consider the symmetric Nakayama algebra A_2^6 and the set \mathcal{P} of non-crossing partitions of $\{1,2\}$; then $\mathcal{P} = \{p_1, p_2\}$ and $p_1 = \{\{1\}, \{2\}\}, p_2 = \{\{1,2\}\}.$

By the definitions of m_1 and m_2 , we have $m_1 = m_2 : p_1 \mapsto p_2, p_2 \mapsto p_1$. For example,

$$\mathcal{S}_{p_2,1} = \begin{cases} 2\\1\\1&2\\2&1\\2&1\\2\\1 \end{cases}, \qquad \mathcal{L}_{p_1,1} = \begin{cases} 1\\2\\1&2\\2\\1 \end{cases}.$$

Obviously, $\Omega(S_{p_2,1}) = \mathcal{L}_{p_1,1} = \Omega^{-1}(S_{p_2,2}), \Omega^{-1}(\mathcal{L}_{p_1,1}) = S_{p_2,1} = \Omega(\mathcal{L}_{p_1,2}).$ Similarly,

$$\Omega(\mathcal{S}_{p_{2},2}) = \mathcal{L}_{p_{1},2} = \Omega^{-1}(\mathcal{S}_{p_{2},1}), \qquad \Omega^{-1}(\mathcal{L}_{p_{1},2}) = \mathcal{S}_{p_{2},2} = \Omega(\mathcal{L}_{p_{1},1}),$$

$$\Omega(\mathcal{S}_{p_{1},1}) = \Omega(\mathcal{S}_{p_{1},2}) = \mathcal{L}_{p_{2},2} = \mathcal{L}_{p_{2},1} = \Omega^{-1}(\mathcal{S}_{p_{1},1}),$$

$$\Omega^{-1}(\mathcal{L}_{p_{2},1}) = \Omega^{-1}(\mathcal{L}_{p_{2},2}) = \mathcal{S}_{p_{1},1} = \mathcal{S}_{p_{1},2} = \Omega(\mathcal{L}_{p_{2},1}).$$

Similarly, for any self-injective Nakayama algebra A_n^{ℓ} , and $\mathcal{L}'_{p,k}$ and $\mathcal{S}'_{p,k}$ over A_n^{ℓ} , by Theorems 4.16 and 5.5 we have the following result.

THEOREM 5.8. Let A_n^{ℓ} be a self-injective Nakayama algebra and \mathcal{P} the set of non-crossing partitions of the set \underline{e} , where e is the greatest common divisor of n and ℓ . For $p \in \mathcal{P}$ and $1 \leq i \leq e$, let $\mathcal{L}'_{p,i}$ and $\mathcal{S}'_{p,i}$ be as in Subsection 4.2. Moreover, let m_1 and m_2 be bijections of \mathcal{P} as in Subsection 5.1, and let Ω , Ω^{-1} denote the syzygy and cosyzygy functors respectively. Then we have the following:

- (1) $\Omega(\mathcal{S}'_{p,i}) = \mathcal{L}'_{p',i}, \text{ where } p' = m_1(p).$
- (2) $\Omega^{-1}(\mathcal{L}'_{p,i}) = \mathcal{S}'_{p'',i}, \text{ where } p'' = m_2(p).$
- (3) $\Omega^{-1}(\mathcal{S}'_{p,i}) = \mathcal{L}'_{p'',k_i}$, where k_i is defined as in Subsection 5.1 and $p'' = m_2(p)$.
- (4) $\Omega(\mathcal{L}'_{p,i}) = \mathcal{S}'_{p',i_1}$, where $i_1 = \overline{k_i + 1}$ is defined as in Subsection 5.1 and $p' = m_1(p)$.

EXAMPLE 5.9. Consider the self-injective Nakayama algebra A_4^6 . From the last example, we have $m_1 = m_2$: $p_1 \mapsto p_2$, $p_2 \mapsto p_1$, where $p_1 = \{\{1\}, \{2\}\}$ and $p_2 = \{\{1, 2\}\}$. Similarly,

$$\begin{split} \Omega(\mathcal{S}'_{p_{2},1}) &= \mathcal{L}'_{p_{1},1} = \Omega^{-1}(\mathcal{S}'_{p_{2},2}), \qquad \Omega(\mathcal{S}'_{p_{2},2}) = \mathcal{L}'_{p_{1},2} = \Omega^{-1}(\mathcal{S}'_{p_{2},1}), \\ \Omega^{-1}(\mathcal{L}'_{p_{1},1}) &= \mathcal{S}'_{p_{2},1} = \Omega(\mathcal{L}'_{p_{1},2}), \qquad \Omega^{-1}(\mathcal{L}'_{p_{1},2}) = \mathcal{S}'_{p_{2},2} = \Omega(\mathcal{L}'_{p_{1},1}), \\ \Omega(\mathcal{S}'_{p_{1},1}) &= \Omega(\mathcal{S}'_{p_{1},2}) = \mathcal{L}'_{p_{2},2} = \mathcal{L}'_{p_{2},1} = \Omega^{-1}(\mathcal{S}'_{p_{1},1}), \\ \Omega^{-1}(\mathcal{L}'_{p_{2},1}) &= \Omega^{-1}(\mathcal{L}'_{p_{2},2}) = \mathcal{S}'_{p_{1},1} = \mathcal{S}'_{p_{1},2} = \Omega(\mathcal{L}'_{p_{2},1}). \end{split}$$

5.3. The number of sms's of Brauer tree algebras. Let A_n^{dn} be a symmetric Nakayama algebra and \mathcal{P} the set of non-crossing partitions of $\underline{n} = \{1, \ldots, n\}$, where n, d are positive integers. The number of sms's in $\{\mathcal{S}_{p,k} \mid p \in \mathcal{P}, k \in \underline{n}\}$ is equal to the number of sms's in $\{\mathcal{L}_{p,k} \mid p \in \mathcal{P}, k \in \underline{n}\}$ by Theorem 5.5. Since the number of non-crossing partitions of \underline{n} with k blocks is the Narayana number N(n, k) (see [10, Corollary 4.1]), where $N(n, k) = \frac{1}{n} \binom{n}{k-1}$. By Theorem 4.10, if $d \geq 2$, then the number of sms's in $\{\mathcal{L}_{p,k} \mid p \in \mathcal{P}, k \in \underline{n}\}$ is $\sum_{k=1}^{n} kN(n, k)$. Otherwise, the number of elements in $\{\mathcal{L}_{p,k} \mid p \in \mathcal{P}, k \in \underline{n}\}$ is $\sum_{k=1}^{n} N(n, k) = C_n$, where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the Catalan number and it is also the number of non-crossing partitions of \underline{n} .

Now we can easily calculate the number of sms's over any self-injective Nakayama algebra. Actually, it was already calculated by Riedtmann [13] and Chan [5] using their respective classifications.

PROPOSITION 5.10. Let A_n^{ℓ} be a self-injective Nakayama algebra and \mathcal{P} the set of non-crossing partitions of \underline{e} , where $e = \gcd(n, \ell)$. If $\ell = e$, then the number of sms's over A_n^{ℓ} is the Catalan number C_e . If $\ell > e$, then the number of sms's over A_n^{ℓ} is $(e+1)C_e$, where $C_e = \frac{1}{e+1} {2e \choose e}$.

Proof. Since the number of sms's over A_n^{ℓ} is equal to the number of sms's over A_e^{ℓ} , we just consider the symmetric Nakayama algebra A_e^{ℓ} .

If $\ell = e$, then by Theorem 4.10 and Remark 4.11 the number of sms's over A_e^{ℓ} is equal to the number of non-crossing partitions of \underline{e} , that is, the Catalan number C_e .

If $\ell > e$, then by Theorems 4.10, 4.16 and the discussion above, the number of sms's over A_e^{ℓ} is $2\sum_{k=1}^{e} kN(e,k)$, where N(e,k) is the Narayana number. Notice that N(e,k) = N(e,e-k+1).

When e is even, we have

$$2\sum_{k=1}^{e} kN(e,k) = 2\sum_{k=1}^{e/2} \{kN(e,k) + (e-k+1)N(e,e-k+1)\}$$
$$= 2(e+1)\sum_{k=1}^{e/2} N(e,k) = (e+1)C_e.$$

When e is odd, we have

$$2\sum_{k=1}^{e} kN(e,k)$$

$$= 2\sum_{k=1}^{(e-1)/2} \{kN(e,k) + (e-k+1)N(e,e-k+1)\} + (e+1)N\left(e,\frac{e+1}{2}\right)$$

$$= 2(e+1)\sum_{k=1}^{(e-1)/2} N(e,k) + (e+1)N\left(e,\frac{e+1}{2}\right)$$

$$= (e+1)\left\{C_e - N\left(e,\frac{e+1}{2}\right)\right\} + (e+1)N\left(e,\frac{e+1}{2}\right) = (e+1)C_e.$$
The result follows directly from the above $-$

The result follows directly from the above. \blacksquare

COROLLARY 5.11. Let B = B(T) be a Brauer tree algebra defined by a Brauer tree T with n edges such that the multiplicity of the exceptional vertex of T is m_0 (for the definition of Brauer tree algebra, we refer to [16, Section 2]). Let \mathcal{P} be the set of non-crossing partitions of \underline{n} . If $m_0 = 1$, then the number of sms's over B is the Catalan number C_n . If $m_0 > 1$, then the number of sms's over B is $(n+1)C_n$, where $C_n = \frac{1}{n+1} {2n \choose n}$.

Proof. This is a direct consequence of the fact that the Brauer tree algebra B is stably equivalent to the symmetric Nakayama algebra $A_n^{nm_0}$ and the fact that sms's are invariant under stable equivalence.

Our short-type and long-type sms's correspond exactly to Chan's bottomtype and top-type configurations defined in [5]. This can be observed by Chan's cutting-off procedure on configurations and by the fact that the (co)syzygy functors interchange the types of sms's; we leave the details to the interested reader.

Acknowledgements. The authors are supported by NSFC (No. 11331006, No. 11431010, No. 11571329, No. 1197144). We would like to thank Steffen Koenig and Aaron Chan for comments and many suggestions on the presentation of this paper. The first author would like to thank China Scholarship Council for supporting her study at the University of Stuttgart and also wish to thank the representation theory group in Stuttgart for hospitality at the same time. We are very grateful to the referee for valuable suggestions and comments, which have improved the presentation of this paper significantly.

REFERENCES

- H. Asashiba, The derived equivalence classification of representation-finite self-injective algebras, J. Algebra 214 (1999), 182–221.
- [2] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.
- [3] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1982), 331–378.
- [4] O. Bretscher, C. Läser and C. Riedtmann, Selfinjective and simply connected algebras, Manuscripta Math. 36 (1982), 253–307.
- [5] A. Chan, Two-term tilting complexes and simple-minded systems of self-injective Nakayama algebras, Algebras Represent. Theory 18 (2015), 183–203.
- [6] A. Chan, S. König and Y. Liu, Simple-minded systems, configurations and mutations for representation-finite self-injective algebras, J. Pure Appl. Algebra 219 (2015), 1940–1961.
- [7] J. Guo, Y. Liu, Y. Ye and Z. Zhang, On simple-minded systems over representationfinite self-injective algebras, arXiv:2006.14289.
- [8] W. Huang, A computer program, http://math0.bnu.edu.cn/~liuym/.
- [9] S. König and Y. Liu, Simple-minded systems in stable module categories, Quart. J. Math. 63 (2012), 653–674.
- [10] G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 (1972), 333–350.
- [11] T. K. Petersen, Eulerian Numbers, Springer, New York, 2015.
- [12] C. Riedtmann, Algebren, Darstellungsköcher, Uberlagerungen and zurück, Comment. Math. Helv. 55 (1980), 199–224.
- [13] C. Riedtmann, Representation-finite self-injective algebras of class A_n, in: Lecture Notes in Math. 832, Springer, 1980, 449–520.
- [14] C. Riedtmann, Representation-finite self-injective algebras of class D_n , Compos. Math. 49 (1983), 231–282.
- [15] C. Riedtmann, Configurations of $\mathbb{Z}D_n$, J. Algebra 82 (1983), 309–327.
- [16] S. Schroll, Brauer graph algebras, in: I. Assem and S. Trepode (eds.), Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses, Springer, 2018, 177–223.

Jing Guo School of Mathematical Sciences University of Science and Technology of China 230026 Hefei, P.R. China E-mail: gjws@mail.ustc.edu.cn Yuming Liu, Zhen Zhang School of Mathematical Sciences Laboratory of Mathematics and Complex Systems Beijing Normal University 100875 Beijing, P.R. China E-mail: ymliu@bnu.edu.cn zhangzhen@mail.bnu.edu.cn

Yu Ye School of Mathematical Sciences CAS Wu Wen-Tsun Key Laboratory of Mathematics University of Science and Technology of China 230026 Hefei, P.R. China E-mail: yeyu@ustc.edu.cn

26